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1 Introduction and motivation

The concept of value functions is fundamental to reinforcement learning (RL). When
introducing value functions in Chapter 3 of their RL book, Sutton & Barto (2018) denote
the value of a state s under policy π as vπ(s), and they present the value function for
any state s under any policy π using the following sequence of equations:

vπ(s)
.
= Eπ[Gt|St = s] (1)

= Eπ[Rt+1 + γGt+1|St = s] (2)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′]

]
(3)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γvπ(s

′)
]

for all s ∈ S. (4)

Equation (4) is the Bellman equation for the state value function for policy π, vπ. This
equation expresses the value of a state s in terms of a recursive relationship with respect
to the values of its successor states, s′. It is fundamental to RL because every RL model
uses some approach for learning an approximation for it. Hence, students of RL will wish
to understand how this fascinating recursive equation arises.

The sequence of equations, however, merely announces (4); it is not designed to explain
how (4) arises. Three of these four equations arise from definitions alone. Equation (1)
is the definition of the value of a state s, vπ(s). Equation (2) follows from (1) by the
definition of Gt, the return. Equation (4) follows from (3) because the expectation in (3)
is the definition of the value of successor state s′, vπ(s

′).

The chain of reasoning needed to understand how equations (3)/(4) arise from (1)/(2) is
missing. Between equations (2) and (3) lies a yawning conceptual gap. To the student
new to RL, equations (3)/(4) might well (perhaps should) feel like audacious assertions —
unexplained results appearing out of nowhere. They felt that way to me. This is despite
the fact that all of the concepts and notation appearing within (3)/(4) are carefully
introduced, individually, by Sutton & Barto (2018) prior to them presenting equations
(3)/(4).

The sense of mystery as to how the Bellman equation for state values arises increases
in Chapter 4 of Sutton & Barto (2018). There, as part of introducing the subject of
policy evaluation (i.e. the problem of estimating/predicting/approximating the state
value function), Sutton & Barto (2018) assert that

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γvπ(St+1)|St = s] (5)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γvπ(s

′)
]
.

Equation (5) suddenly appears on the scene, but its presence is not discussed in any way.
It’s not clear how it arises or whether it’s a necessary or optional step on the road to
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equations (3)/(4). Comparison with (2) implies that

Eπ[vπ(St+1)|St = s] = Eπ[Gt+1|St = s],

but this is non-intuitive. The return, Gt+1, is a random variable. Likewise, since St+1

is a random variable, the function of that random variable, vπ(St+1), is itself a random
variable. But we know nothing of these two random variables conditioned on event St = s
or of why the expected values of their distributions should be the same. It may be that
these two conditioned random variables are ‘equal in distribution’, or it may be that their
distributions are very different but happen to share the same expected value.

If we combine this information from Chapters 3 and 4 of Sutton & Barto (2018), we have
the sequence of equations

vπ(s)
.
= Eπ[Gt|St = s] (6)

= Eπ[Rt+1 + γGt+1|St = s] (7)

= . . . (8)

= Eπ[Rt+1 + γvπ(St+1)|St = s] (9)

= . . . (10)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′]

]
(11)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γvπ(s

′)
]

∀ s ∈ S. (12)

This document fills in the gaps represented by the ellipses in (8) and (10). It provides
two separate but related derivations: one primary, one secondary. The primary derivation
takes the reader from (6)/(7) straight through to (11)/(12) whilst ignoring (bypassing)
(9). The secondary derivation first backtracks a bit to a late-stage point within the
primary derivation and then forks to take a new direction that leads to (9).

I developed these derivations for me. I used the exercise as a learning tool — an opportu-
nity to refresh and strengthen and record my grasp of probability. I like the mathematics
of probability and feel comfortable with its basics. I am not a sophisticated probability
guy for whom large, clever leaps of probabilistic reasoning are helpful or come naturally
to mind. Finding maximally terse and eloquent derivations was not my motivation. The
derivations I’ve developed and documented here are detailed and step-by-step, with lots
of explanation. It’s people like me who are most likely to find these derivations helpful.
Sophisticated probability people are likely to find them verbose and tedious. Support
for all of the probabilistic reasoning used in my derivations can be found in probability
textbooks such as Blitzstein & Hwang (2015).

Having developed my derivations, I can understand why Sutton & Barto (2018) chose
not to provide a derivation for the Bellman equation for state values of their own. Their
purpose is to teach RL, not probability. And no one derivation could serve all readers
well.
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2 Concepts and notation

To help this document be self-contained and reduce the reader’s reliance on Sutton &
Barto (2018) in order to make sense of it, we briefly summarise here the concepts and
notation used in the Bellman equation for state values and its derivation.

Time

discrete time steps: t = 0, 1, 2, 3, . . .

States

the set of environmental states: S

the random variable representing the environment’s state at time t: St ∈ S

particular states: s, s′ ∈ S

the state at time t (current state): St = s

the state at time t+ 1 (successor state): St+1 = s′

Actions

the set of actions from which the agent may choose: A

the set of actions available in state s: A(s)

the random variable representing the action selected by the agent at time t: At ∈ A

a particular action: a ∈ A(s)

at time t, after having arrived in state St = s, the agent selects an action At = a ∈
A(s)

Rewards

the set of numerical rewards: R ⊂ R

the random variable representing the reward received by the agent at time t: Rt ∈ R

a particular reward value: r ∈ R

as a consequence of arriving in state St = s and selecting action At = a, one time step
later the agent receives reward Rt+1 = r and finds itself in a new (successor) state,
St+1 = s′

Trajectory of a Markov Decision Process

the Markov Decision Process (MDP) and the agent together give rise to a sequence or
trajectory of states, actions and rewards that looks like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, S3, A3, R4, . . .
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Dynamics of a Markov Decision Process

p(s′, r|s, a) .
= Pr{St+1 = s′, Rt+1 = r|St = s, At = a} ∈ [0, 1]

p specifies a probability distribution for each state-action pair, s and a, such that∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1, ∀ s ∈ S, a ∈ A(s)

.

p is said to fully characterise the dynamics of the environment (the MDP) because,
through it, each state-action pair, St and At, fully determines the probability of each
succeeding possible value for St+1 and Rt+1. That is, past (historic) states and actions
have no influence on what happens next. This is the characteristic (memoryless) Markov
property, where the present alone determines the future, not the past.

Returns

the agent receives a sequence of rewards according to the trajectory of the Markov Deci-
sion Process (MDP): R1, R2, R3, R4, . . . , Rt−1, Rt, Rt+1, . . .

the random variable denoting the return at time t: Gt

the return, Gt, is a sum of discounted future rewards:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . . )

= Rt+1 + γGt+1.

the discount rate, γ ∈ [0, 1], is a constant that determines the present value of future
rewards

the agent seeks to learn to select actions that maximise the expected return

Policies

a policy, denoted π, guides/governs the agent’s action selection by mapping states s to
probabilities of selecting actions a

if the agent is following policy π at time t, then π(a|s) is the probability that At = a
if St = s; more broadly, π(a|s) is a probability distribution over a ∈ A(s) for each
s ∈ S:

π(a|s) .
= Pr(At = a|St = s) ∈ [0, 1]

such that
∑

a∈A(s) π(a|s) = 1

State values

the value of a state s under a policy π, denoted vπ(s), is defined to be the expected return
when starting in state s and following policy π thereafter:

vπ(s)
.
= Eπ[Gt|St = s] and vπ(s

′)
.
= Eπ[Gt+1|St+1 = s′],
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where Eπ[·] denotes the expected value of a random variable given that the agent follows
policy π, and t is any time step

the function vπ is called the state value function for policy π

3 The derivation

My derivation relies on the application of several concepts from basic probability theory,
including:

• the definitions of expectation and conditional expectation, and their properties such
as the LOTUS (law of the unconscious statistician)

• the definition of conditional probability and its generalisations

• the product rule (sometimes called the ‘chain rule’ or ‘general law of multiplication’)

• marginalisation (to eliminate random variables)

• reverse marginalisation (to introduce random variables)

• the concept of “extra conditioning”

• the independence of events and its implications for conditional probabilities

• the Markov property (assumption) of MDPs and its implications.

We begin by writing

vπ(s)
.
= Eπ[Gt|St = s] by definition of state value

= Eπ[Rt+1 + γGt+1|St = s] by definition of Gt

= Eπ[Rt+1|St = s] + Eπ[γGt+1|St = s] (13)

= Eπ[Rt+1|St = s] + γEπ[Gt+1|St = s], (14)

where (13) and (14) are justified by the linearity of expectation and, by extension, of
conditional expectation.

To keep things simple (and to conserve horizontal space), from here onward we work
with the two expectation components of the RHS of (14) individually and separately.
For clarity, we name these two components expectation component 1 and expectation
component 2, respectively. At the end of the derivation, we bring the separately derived
expansions of these two expectation components together to construct the final derivation
results. Throughout the remainder of the derivation, we also employ a space-conserving
notation convention whereby events, such as St = s and Rt+1 = r, are represented
by the values of the random variables alone, such as, in these two examples, s and r,
respectively.
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3.1 Expansion of expectation component 1

We begin our expansion of expectation component 1 by writing

Eπ[Rt+1|St = s] =
∑
r

p(r|s) r by definition of expectation

=
∑
r

r p(r|s)

=
∑
r

r
∑
s′

p(s′, r|s) by reverse marginalisation

=
∑
r

r
∑
s′

∑
a

p(s′, r, a|s) by reverse marginalisation

=
∑
a

∑
s′

∑
r

p(s′, r, a|s) r. (15)

Now, in probability theory the concept of conditional probability is defined using two
random variables (or events), one being conditioned and the other doing the conditioning.
It is known that this definition generalises to three random variables (or events) in the
following way:

P (A|B) =
P (A,B)

P (B)
=⇒ P (A,B|C) =

P (A,B,C)

P (C)
. (16)

It is also known that to any valid probabilistic relation one can apply “extra conditioning”,
so long as it is done consistently to all terms in the relation. Hence, we can introduce an
additional random variable, D, to the RHS of (16) by writing

P (A,B|C) =
P (A,B,C)

P (C)
=⇒ P (A,B|C,D) =

P (A,B,C|D)

P (C|D)
, (17)

which, via algebra, yields the result

P (A,B,C|D) = P (A,B|C,D)P (C|D). (18)

Using result (18), we can take the probability expression in (15) and re-express it as
follows

p(s′, r, a|s) = p(s′, r|a, s)p(a|s) = p(s′, r|s, a)p(a|s) = p(s′, r|s, a)π(a|s). (19)

Notice, here, that we also took the opportunity to introduce the use of the notation π by
representing p(a|s) as π(a|s), per the convention used by Sutton & Barto (2018).

We can now return to (15) and continue our expansion by writing

Eπ[Rt+1|St = s] =
∑
a

∑
s′

∑
r

p(s′, r, a|s) r

=
∑
a

∑
s′

∑
r

p(s′, r|s, a)π(a|s) r by (19)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) r. (20)

This concludes our expansion of expectation component 1 in the RHS of (14).
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3.2 Expansion of expectation component 2

Now we turn our attention to expanding expectation component 2 of the RHS of (14).
We begin by writing

γEπ[Gt+1|St = s] = γ
∑
gt+1

gt+1 p(gt+1|s) by def. of expectation

= γ
∑
gt+1

gt+1

∑
s′

p(s′, gt+1|s) by rev. marg.

= γ
∑
gt+1

gt+1

∑
s′

∑
r

p(s′, r, gt+1|s) by rev. marg.

= γ
∑
gt+1

gt+1

∑
s′

∑
r

∑
a

p(s′, r, a, gt+1|s) by rev. marg.. (21)

To make it clear how it is we can take (21) further, we first generalise the conditional
probability and “extra conditioning” arguments given in (17) and (18) by introducing a
fifth variable. We can assert that

P (A,B,C|D) =
P (A,B,C,D)

P (D)
=⇒ P (A,B,C|D,E) =

P (A,B,C,D|E)

P (D|E)
, (22)

which implies that

P (A,B,C,D|E) = P (A,B,C|D,E)P (D|E). (23)

Picking up from (21), we can thus write

γEπ[Gt+1|St = s] = γ
∑
gt+1

gt+1

∑
s′

∑
r

∑
a

p(s′, r, a, gt+1|s)

= γ
∑
gt+1

gt+1

∑
s′

∑
r

∑
a

p(s′, r, a|gt+1, s)p(gt+1|s), (24)

where (24) is justified by (23).

The two probability components in (24) need further re-expression. For clarity, we give
them names. We refer to p(gt+1|s) as probability component A and to p(s′, r, a|gt+1, s) as
probability component B. We develop their re-expressions individually, in turn.

3.2.1 Re-expression of probability component A

It is helpful to develop the re-expression of probability component A of (24), p(gt+1|s),
in two stages. Each stage benefits from a bit of preliminary discussion.

Stage 1 To motivate and set up the first stage, we discuss a general rule in proba-
bility theory sometimes called the “product rule” (also variously called in the literature
the “chain rule”, the “general law of multiplication”, and other names). Blitzstein &
Hwang (2015) describe this rule using theorems but without assigning any name. The
rule describes a general approach to factoring (expressing) joint probabilities in terms of
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products of conditional and marginal probabilities. The most basic form of the product
rule flows directly (via algebra) from the definition of conditional probability. The two
statements (definitions)

P (A|B) =
P (A,B)

P (B)
and P (B|A) = P (A,B)

P (A)

together imply that

P (A,B) = P (A|B)P (B) = P (B|A)P (A). (25)

Statement (25) of the product rule shows that with 2 events there are 2! = 2 possible ways
to factor the joint probability of those events into products of conditional and marginal
probabilities. In general, with n events there are n! unique ways to factor the joint
probability of the events into products of conditional and marginal probabilities. For
example, if we have a joint probability with 3 events, P (A,B,C), one of the 3! = 6 ways
to factor it is as follows:

P (A,B,C) = P (A|B,C)P (B|C)P (C). (26)

Now we’re ready to implement the first stage in re-expressing probability component A of
(24). We do this by writing

p(gt+1|s) =
∑
s′

p(gt+1, s
′|s) by rev. marginalisation (27)

=
∑
s′

p(gt+1, s
′, s)

p(s)
by def. conditional prob. (28)

=
∑
s′

p(gt+1|s′, s)p(s′|s)p(s)
p(s)

by product rule, per (26) (29)

=
∑
s′

p(gt+1|s′, s)p(s′|s) (30)

= p(gt+1|s′, s)
∑
s′

p(s′|s) (31)

= p(gt+1|s′, s), (32)

where (32) is justified by marginalisation, since
∑

s′ p(s
′|s) = 1.

Stage 2 The second stage of re-expressing probability component A of (24), p(gt+1|s),
involves taking (32) one step further. Doing this requires discussion of the Markov prop-
erty.

To facilitate careful consideration of the probability component p(gt+1|s′, s) in (32), it
helps to relax our space-conserving notation convention for a moment and write it fully,
as

P (Gt+1 = gt+1 | St+1 = s′, St = s), (33)

so that its three events can be interpreted precisely.
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The expression in (33) refers to the probability that the return random variable,

Gt+1 = Rt+2 + γRt+3 + γ2Rt+4 + . . . ,

will take on a certain value given that the events St+1 = s′ and St = s have both been
observed. That is, time steps t and t+1 have occurred, and the value of random variable
Gt+1 depends on rewards yet to received in time steps t + 2, t + 3, t + 4, etc.. Or,
in other words, we can think of time steps t + 2, t + 3, . . . , (and, thus, the value of
random variable Gt+1) as representing the future, time step t + 1 as representing the
present, and time step t as representing the past. But we know that MDPs assume that
the Markov property always applies, which means that the present alone determines the
future and that the past is irrelevant with respect to what happens next. Hence, we
can confidently assert that the future event Gt+1 = gt+1 and the past, conditioning event
St = s are (statistically) independent of one another. By definition, if events A and B
are independent, then P (A|B) = P (A). Thus, by the property of independence, we are
permitted to drop the (redundant) conditioning event St = s and assert that

P (Gt+1 = gt+1 | St+1 = s′, St = s) = P (Gt+1 = gt+1 | St+1 = s′).

Thus, we may implement the second stage of, and conclude, our re-expression of proba-
bility component A in (24) by picking up from (32) and writing

p(gt+1|s) = p(gt+1|s′, s)
= p(gt+1|s′) by independence due to Markov property. (34)

3.2.2 Re-expression of probability component B

Now we turn to re-expressing probability component B in (24), p(s′, r, a|gt+1, s). Relaxing
our space-conserving notation convention once again in order to fully express its events,
this component becomes

P (St+1 = s′, Rt+1 = r, At = a | Gt+1 = gt+1, St = s).

As explained earlier, the event Gt+1 = gt+1 represents a sum of discounted rewards
pertaining to time steps t + 2, t + 3, etc.. As such, it is a future event relative to the
latest (present) time step t + 1 and its associated events St+1 = s′ and Rt+1 = r, and
relative to the past time step, t, and its associated event, At = a. In other words,
because it is in the future, event Gt+1 = gt+1 is (intuitively) independent of the three
events it is conditioning, whether we consider those events individually or jointly. Thus,
by the property of independence, we may drop the conditioning event Gt+1 = gt+1 from
probability component B and write, in our space-conserving notation, that

p(s′, r, a|gt+1, s) = p(s′, r, a|s). (35)

Note that our assertion of the independence of events in this case has nothing to do with
the Markov property. It flows from intuition, based on the notion of time alone. Another
way of expressing the observation we are making here (our reasoning) is to say simply
that conditioning on a future event is redundant.
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3.2.3 Concluding expansion of expectation component 2

Having re-expressed probability components A and B of equation (24), in (34) and (35),
respectively, we now continue our expansion of expectation component 2 from (14) by
picking up from where we left off in (24). We do so by writing

γEπ[Gt+1|St = s] = γ
∑
gt+1

gt+1

∑
s′

∑
r

∑
a

p(s′, r, a|gt+1, s)p(gt+1|s)

= γ
∑
gt+1

gt+1

∑
s′

∑
r

∑
a

p(s′, r, a|s)p(gt+1|s) by (35) (36)

= γ
∑
gt+1

gt+1

∑
s′

∑
r

∑
a

p(s′, r, a|s)p(gt+1|s′) by (34) (37)

=
∑
s′

∑
r

∑
a

p(s′, r, a|s)γ
∑
gt+1

gt+1p(gt+1|s′) (38)

=
∑
s′

∑
r

∑
a

p(s′, r, a|s)γEπ[Gt+1|St+1 = s′], (39)

where (39) is justified by the definition of conditional expectation.

As already shown in the expansion of expectation component 1, we may reuse (18) and
(19) to write

p(s′, r, a|s) = p(s′, r|s, a)π(a|s),

and, hence, we may continue our expansion of expectation component 2 from (39), and
conclude it, by writing

γEπ[Gt+1|St = s] =
∑
s′

∑
r

∑
a

p(s′, r, a|s)γEπ[Gt+1|St+1 = s′]

=
∑
s′

∑
r

∑
a

p(s′, r|s, a)π(a|s)γEπ[Gt+1|St+1 = s′] (40)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) γEπ[Gt+1|St+1 = s′]. (41)

3.3 Concluding the primary derivation

Having completed our expansions of expectation components 1 and 2 from (14), we may
now combine the results, from (20) and (41), respectively, and realise our primary ob-
jective of deriving the Bellman equation for state values expressed in equations (11) and
(12). To provide full context, we resume our derivation from the very beginning, with

11



equation (6). We may now write that

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1|St = s] + γEπ[Gt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) r + by (20)∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) γEπ[Gt+1|St+1 = s′] by (41)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′]

]
(42)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γvπ(s

′)
]
. (43)

The reader is invited to confirm that, as desired, equation (42) is identical to (11) and
equation (43) is identical to (12). This concludes our derivation of the Bellman equation
for state values that is used so extensively within RL.

3.4 Concluding the secondary derivation

To realise our secondary objective of finding a justifying derivation for the intermediate
equation (9) that Sutton & Barto (2018) claim lies on the road to the Bellman equation
for state values, we need an alternate expression for expectation component 2 of (14). We
can find the alternate expression we need if we return (backtrack) to equation (39) and
take it in a new direction. Picking up from (39), we may write

γEπ[Gt+1|St = s] =
∑
s′

∑
r

∑
a

p(s′, r, a|s)γEπ[Gt+1|St+1 = s′]

=
∑
s′

∑
r

p(s′, r|s)γEπ[Gt+1|St+1 = s′] by marg.

=
∑
s′

p(s′|s)γEπ[Gt+1|St+1 = s′] by marg.

=
∑
s′

p(s′|s)γvπ(s′) by def. of state value

= γ
∑
s′

p(s′|s)vπ(s′)

= γEπ[vπ(St+1)|St = s] (44)

= Eπ[γvπ(St+1)|St = s], (45)

where: 1) (44) is justified by the definition of conditional expectation and the property
whereby the LOTUS (law of the unconscious statistician) can be applied to that definition,
and 2) (45) is justified by the linearity of expectation, since γ is a constant.

Our alternate expression for expectation component 2 of (14), given in (44)/(45), shows
that, as we surmised in Section 1, the assertion by Sutton & Barto (2018) of equation (9)
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does indeed imply that

Eπ[vπ(St+1)|St = s] = Eπ[Gt+1|St = s].

Further, our derivation of (44)/(45) shows that, as we surmised, the equality of the
expected values of these two distributions is highly non-intuitive.

We may now use our alternate expression for expectation component 2 of equation (14),
given in (45), to conclude our derivation of intermediate equation (9). We do so by
writing

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1|St = s] + γEπ[Gt+1|St = s]

= Eπ[Rt+1|St = s] + Eπ[γvπ(St+1)|St = s] by (45)

= Eπ[Rt+1 + γvπ(St+1)|St = s]. (46)

The reader is invited to confirm that, as desired, equation (46) is identical to equation
(9). This concludes our secondary derivation, that of intermediate equation (9).

3.5 Addressing a potential source of confusion

Here I address a certain aspect of my derivation that at one point caused me some
confusion and anxiety. I don’t want readers to suffer the same concerns.

Subsection 3.2.1 shows that p(gt+1|s) = p(gt+1|s′), as given in (34). The second stage of
the argument deployed there reasons that p(gt+1|s′, s) = p(gt+1|s′) because of the Markov
property and statistical independence. Specifically, we reason that event St = s is in the
past and that event Gt+1 = gt+1 is in the future and that, due to the MDP assumption
that the Markov property always holds, these two events are therefore independent and
hence we can drop the conditioning event St = s from the expression p(gt+1|s′, s).

Not long after having convinced myself of the soundness of this reasoning, I started to
worry that perhaps the same reasoning must therefore mean that p(gt+1|s) = p(gt+1).
If this were true, then my derivation falls apart because the conclusion in (34) that
p(gt+1|s) = p(gt+1|s′) must then progress to the conclusion that p(gt+1) = p(gt+1|s′),
which is false, because events Gt+1 = gt+1 and St+1 = s′ are clearly not independent. For
a time, I feared that my derivation led to a fatal contradiction.

Happily, I was soon able to convince myself that all was OK. It is not the case that
p(gt+1|s) = p(gt+1). Yes, event St = s is in the past and event Gt+1 = gt+1 is in the future,
but here the present (event St+1 = s′) is not represented. Because the present has not been
observed, the future event is not independent of the past event. A dependency remains,
so the conditioning event St = s cannot be dropped from the probability expression
p(gt+1|s).
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4 Alternate derivations

4.1 Cross Validated

One question/discussion on Cross Validated contains several contributions relating to
deriving the Bellman equation for state values, per Sutton & Barto (2018). All of the
contributions there are much more terse than mine, most of them dramatically so. So most
of them don’t help me much. But there is an exception. One contribution is remarkably
close to my approach — almost like a condensed version of my derivation. It thus provides
strong corroboration for my approach that I value highly. But that contribution also
differs from my approach in interesting ways that illustrate the flexibility of probabilistic
reasoning and provide an instructive alternate perspective. None of the contributions in
that question/discussion, however, address the derivation of the intermediate equation
(9) from Sutton & Barto (2018).

The author of the contribution that is similar to my derivation writes, as I do, that

p(gt+1|s) =
∑
s′

∑
r

∑
a

p(s′, r, a, gt+1|s),

by reverse marginalisation. But he then reasons differently from me. His reasoning makes
a leap that was too big for me, at first. Here I discuss that leap by breaking it down and
recording my analysis. The author writes that

p(s′, r, a, gt+1|s) = p(gt+1|s′, r, a, s)p(s′, r, a|s) (47)

= p(gt+1|s′, r, a, s)p(s′, r|a, s)π(a|s) (48)

= p(gt+1|s′)p(s′, r|a, s)π(a|s). (49)

The author justifies (49) by referring to the Markov property and pointing out that all
three of the conditioning events Rt+1 = r, At = a and St = s, in (48), are independent of
the future event Gt+1 = gt+1, and can therefore be dropped from p(gt+1|s′, r, a, s). I get
that part. The leap I couldn’t get is (47).

I think (47) can be described as a generalisation of what I refer to as the “product rule”
— a particular application of the rule whereby multiple variables are shifted across the
conditioning symbol, (|), all at once, rather than one at a time in series. But I haven’t
seen this done before so I want to walk through this one step at a time to better learn
the pattern at play. To do so, I’ve chosen to use generalised random variables.

We wish to show that

P (A,B,C,D|E) = P (D|A,B,C,E)P (A,B,C|E).
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Going step-by-step, shifting only one variable at a time, we can write

P (A,B,C,D|E) = P (A,B,D|C,E)P (C|E) shift C (50)

= P (A,D|B,C,E)P (B|C,E)P (C|E) shift B (51)

= P (D|A,B,C,E)P (A|B,C,E)P (B|C,E)P (C|E) shift A (52)

= P (D|A,B,C,E)
P (A,B,C,E)

P (B,C,E)

P (B,C,E)

P (C,E)

P (C,E)

P (E)
(53)

= P (D|A,B,C,E)
P (A,B,C,E)

P (E)
(54)

= P (D|A,B,C,E)P (A,B,C|E). (55)

So the leap the author makes in (47) looks sound! And we have learned more about the
“product rule” and how it can be generalised.

4.2 Beware of derivations based on the LOIE

I have come across purported derivations of the Bellman equation for state values that are
succinct and that achieve their succinctness through what they claim to be an application
of the Law of Iterated Expectations (LOIE). I believe the validity of such derivations may
be highly suspect, for two reasons: 1) they may apply the LOIE in contexts to which it
does not pertain, and 2) they may use invalid forms of the LOIE.

The LOIE, also called Adam’s law by Blitzstein & Hwang (2015), asserts that

E[E[Y |X]] = E[Y ]. (56)

Here, both X and Y are random variables, and hence E[Y |X] is a random variable. This
is very different from E[Y |X = x], where X = x is an event and hence E[Y |X = x]
is a real number. Taking an expectation of a random variable, as in E[E[Y |X]], makes
sense; taking an expectation of a real number, as in E[E[Y |X = x]], does not, since
E[c] = c.

Blitzstein & Hwang (2015) also define another form of Adam’s law (the LOIE) that
involves “extra conditioning”. They start with (56) and condition everything on a third
random variable, Z, giving

E[E[Y |X,Z]|Z] = E[Y |Z]. (57)

Note how Z is introduced in three places, not just two: it conditions the random vari-
able Y on both sides of the equality sign, and it also conditions the random variable
E[Y |X,Z].

One purported derivation of the Bellman equation for state values I encountered (the
URL for which no longer exists) cited the LOIE to justify the following assertion:

E[E[Gt+1|St+1]|St] = E[Gt+1|St]. (58)

Equation (58) is invalid, for two reasons. First, structurally it is malformed. It looks like
the author is trying to use the form of the LOIE given in (57), but the “extra conditioning”
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with St has not been applied properly. There should be three instances of St, not two.
Second, the author is attempting to invoke the LOIE in an inappropriate context. This
becomes clear when he defines some of his notation. At one point he explains that his use
of St really means St = s (i.e. that St denotes an event, not a random variable). But, as I
have explained, the LOIE is defined only in terms of random variables, not events.

Equation (58) was key to the author’s purported derivation, so the fact that it is badly
flawed means the whole derivation was fatally flawed. The moral of the story is: be wary
of derivations of the Bellman equation for state values that rely on the LOIE. I’m not
claiming that it’s impossible to use the LOIE correctly to derive the Bellman equation
for state values. It may well be feasible to do so. I’m just cautioning people that I’ve
seen the LOIE be misused, resulting in purported Bellman equation derivations that are
specious.
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